Мир квантовой оптики: откройте для себя удивительные книги

Чтения по квантовой оптике

Где взять понимание

В нашу эпоху доступной информации важно умение отделять зерно от плевел. Чтобы оперировать определенными образами, нужно рассмотреть проблему с разных ракурсов ознакомившись с точками зрения нескольких авторов

Еще нужно много практики. Квантовая теория это в первую очередь инструмент, а не философское течение, где каждый волен озвучить свое мнение. Для использования этого сложного инструмента нужны инструкции и учителя.

Гуго Штейнгауз как-то сказал: “математик сделает это лучше”. Под “это” подразумевается всё. Оно и понятно, ведь занятие точными науками есть многогранная тренировка мышления и привнесение в ум дисциплинированности. Так что, без должных навыков из линейной алгебры, дифференциального исчисления и математической логики с теорией алгоритмов путь в теоретическую физику закрыт. Все остальное самообман и иллюзия понимания — вы просто не будете восприимчивым к грамотным объяснениям, так как мышление не будет генерировать образов, которые пытается донести собеседник или автор касательно данной темы.

Только разобравшись со вспомогательными инструментами из матана и с основами классической физики (механика, электродинамика, оптика, статы) можно приступать к квантам. Тут не сдержусь порекомендовать литературу “которая навсегда перевернет ваше сознание”

  • Иванов М.Г. Как понимать квантовую механику 2015 (Название говорит само за себя. В книге можно найти теоретический минимум и выжимку из философских рассуждений)
  • Тихонов Д. Теоретическая химия: внутри чёрного ящика (Неформальная методичка. Кого-то может отпугнуть лукморовский стиль изложения, кого-то, наоборот, привлечь. Наиболее ценна из-за ликбеза по основным материалам и кропотливых выкладок, а также раскрытия важных аспектов химической физики)
  • Блохинцев Д.И. Принципиальные вопросы квантовой механики 1966 (Большой упор на философию и методологию. Лично мне понравился вход в тему со стороны статистической физики)
  • Бом Д. Квантовая теория 1952 (Потряснейший учебник от товарища Бома, изданный им до перехода на темную сторону. Вход в тему со стороны электродинамики и постоянные поиски смысла. Особенно интересно идет с нападками редактора русского издания Вонсовского)
  • Дирак П. Принципы квантовой механики 1958 (Одна из тех редких книг, которую хочется иметь в бумажном виде, чтобы читать по вечерам у камина)
  • Балашов В.В. Курс квантовой механики 2001 (Хороша задачками и некоторыми аспектами не раскрытыми в других учебниках)
  • Фейнман Р. Статистическая механика курс лекций (Много крутых тем, но требует основательный бэкграунд по матану)
  • Флюгге З. Задачи по квантовой механике 1974 (Ну а вы как хотели? Полистать оглавления и все? Еще надо задачки решать!)
  • Хренников А.Ю. Введение в квантовую теорию информации 2008 (Это для встряски)
  • Jon Magne Leinaas Modern Quantum Mechanics 2016 (Современно, без воды, я б сказал хороший скелет)
  • David J. Griffiths Introduction to Quantum Mechanics 2004 (А здесь уже с мясцом и философией)
  • Ну и в прошлой публикации есть список литературы по квантовым вычислениям, там как правило присутствует ликбез по теме

Если вы не проявляли усилий для основательного освоения материала, то будьте честны хотя бы с собой — вы сторонний наблюдатель и нефига в квантах не смыслите. Не встревайте в споры, не выдвигайте теории и уж тем более не учите окружающих. Ну да, это наболевшее. Ладно здесь на хабре и еще много на каких технических форумах и тематических группах проскакивает дичь, порожденная необразованностью автора, но когда два профессора подряд на лекциях по философии упраздняли квантовую механику и теорию относительности, тут уж мне многое пришлось переосмыслить.

Однако же, на время отвлечемся от пространных разговоров и поработаем руками.

Уравнение Шредингера

В наиболее общем случае эволюцию (переход между состояниями) абстрактной системы можно описать взаимно-однозначными афинными преобразованиями фазового пространства: . В квантовом случае это будет перевод операторов плотности. Свойство аффинности имеет прямой статистический смысл: оно означает сохранение “весов” в смесях состояний.

Введя унитарный оператор U, мы имеем — афинное взаимно-однозначное отображение множества квантовых состояний S на себя, то есть, обратимую эволюцию. При обратимой эволюции чистые состояния переходят в чистые, при этом вектор исходного чистого состояния преобразуется в .

Для непрерывной однопараметрической группы унитарных операторов удовлетворяющей условиям:

  • (однородность по времени)
  • непрерывность функции

работает теорема Стоуна

где H — эрмитов оператор, а параметр t обычно играет роль времени. И вот, для векторов чистых состояний можно получить уравнение Шредингера

Из терминологии классической механики: — гамильтониан, оператор полной энергии системы, то есть, сумма кинетической энергии и энергии системы в поле некоего потенциала.

Тем кто полюбил линейную алгебру занимаясь компьютерной графикой (привет пользователям OpenGL), уравнение как бы намекает, что эволюция чистой квантовой системы это повороты вектора состояния путем умножения на матрицу-гамильтониан.

Формально, уравнение Шредингера ни откуда не выводится, будучи в нерелятивистской квантовой механике наиболее общим. Оно постулируется как обобщение экспериментов. Хотя, в книге Бома можно посмотреть довольно органичный способ его получения на основе выражения волны для свободной частицы.

Практически вся волновая теория заключена в волновом уравнении, если мы знаем, как интерпретировать волновую функцию. Уравнение Шредингера является математическим выражением корпускулярно-волнового дуализма микрочастиц. В предельном случае, когда длины волн де Бройля значительно меньше размеров рассматриваемого движения, уравнение Шредингера позволяет описывать движение частиц по законам классической механики.

С математической точки зрения — это дифференциальное уравнение в частных производных, которое имеет множество решений. В каждой конкретной задаче из этого множества следует выбрать одно решение, отвечающее условиям задачи.

С физической точки зрения нужно отметить, что согласно уравнению Шредингера волновая функция изменяется детерминировано, то есть совершенно однозначно. В этом смысле квантовая механика напоминает классическую, в которой движение системы заранее предопределено начальными условиями. Однако сама волновая функция имеет вероятностный смысл.

Наконец, необходимо отметить важную особенность уравнения Шредингера: оно линейно. Волновая функция и ее производные входят в него в первой степени и для волновых функций справедлив принцип суперпозиции. Он позволяет сложные модели разбивать на подзадачи.

Факторизуя волновую функцию на временную и на пространственные компоненты получаем одномерное стационарное Уравнение Шредингера

Это ни что иное, как задача на собственные значения оператора Гамильтона. Энергия – одна из наблюдаемых, следовательно, это уравнение на допустимые наблюдаемые значения энергии и на соответствующие им состояния системы. Получим общее решение для нулевого потенциала:

Теперь знай себе, подставляй граничные и начальные условия в зависимости от задачи. Так можно получить, например, аналитическое выражение для свободной частицы в потенциальной яме, дающее вероятности локализации в некотором пространстве

К этой модели сводится, например, движение -электрона в цепи полиена .

Если же учитывать внешний потенциал (а он разнится в зависимости от среды) то волновую функцию в некой слоистой структуре можно представить в виде:

Используя граничные условия и довольно красивый метод матриц переноса получаем спектр и собственные функции для последовательности произвольных постоянных потенциалов

Этой же методой выуживают значения энергии резонансных переходов электронов в слоисто-неоднородных средах.

Эффект наблюдателя — простые ответы на сложные вопросы

Чем же в итоге является свет? Свет — своего рода парадокс. Он не является ни волной, ни частицей, но проявляется и те, и другие свойства, которые взаимно дополняют друг друга.

Что из себя представляет квантово-волновой дуализм сегодня? На сегодняшний день квантово-волновой дуализм имеет значение, скорее, для общего понимания эволюции физики и более интересен историкам, а не физикам, так как представляет собой историческую ценность, а не научную.

Почему сегодня квантовый дуализм потерял научную ценность? Сейчас существует более двух способов описания материального объекта (корпускулярный, волновой, термодинамический и т.д.) Кроме того, противопоставлять и сравнивать материальный объект некорректно.

Почему спустя столько лет опыт Юнга показал иной результат? Дело в том, что возможность запустить в щель лишь один электрон появилась лишь с появлением нового оборудования. У Томаса Юнга в девятнадцатом веке просто не было такой возможности.

Думал ли кто-то о квантово-волновом дуализме раньше его появления? Вряд ли. Учёные опирались на работы своих предшественников и зачастую боялись отступиться от уже сформированной картины мира. Именно поэтому до конца девятнадцатого века физики надеялись доказать существование эфирной среды. Тем более квантовая физика совершенно не похожа на классическую. Многие законы квантовой физики для классического варианта абсурдны.

Квантовая запутанность

Эйнштейн не мог смириться с неопределенностью Вселенной, вытекающей из квантовой механики. Физик считал, что объект существует не только когда за ним наблюдают (как утверждал Нильс Бор), но и все остальное время. Ученый писал: «Мне хочется верить, что Луна светит даже когда я на нее не смотрю.» Сама мысль о том, что реальность Вселенной определяется когда мы открываем и закрываем глаза казалась ему немыслимой. По мнению Эйнштейна квантовой теории не хватало чего-то, что описало бы все свойства частиц, в том числе их местонахождение даже в тот момент, когда за ними не наблюдают. И в 1935 году Эйнштейну показалось, что он нашел слабое место квантовой механики. Это было невероятно странное явление, противоречащее всем логическим представлениям о Вселенной – квантовая запутанность.

Но даже если разделить эти частицы и отправить в разные концы света, как предлагает квантовая механика, они все равно могут остаться запутанными и неразрывно связанными. Эйнштейну такая связь между частицами казалась невозможной, он так ее и назвал – «сверхъестественная связь на расстоянии». Ученый допускал, что запутанные частицы могут существовать, но считал, что никакой «сверхъестественной связи на расстоянии» нет. Напротив, все предопределено задолго до момента измерения.

Допустим, кто-то взял пару перчаток, разделил их и положил каждую в отдельный чемодан. Затем один чемодан отправили вам, а второй в Антарктиду. До того момента, пока чемоданы закрыты, вы не знаете, какая из перчаток там лежит. Но открыв чемодан и обнаружив в нем левую перчатку, мы со 100% уверенностью узнаем, что в чемодане в Антарктиде лежит правая перчатка, даже если в него никто не заглядывал.

Нильс Бор, в свою очередь, полагался на уравнения, доказывающие, что частицы ведут себя как два колеса, которые могут мгновенно связать случайные результаты своего вращения, даже находясь на огромном расстоянии друг от друга. Так кто же прав?

Определить, действительно ли между запутанными частицами существует «сверхъестественная связь» как между вращающимися колесами, или же никакой связи нет и свойства частиц предопределены заранее, как в случае с парой перчаток, удалось физику Джону Белл. С помощью сложных математических вычислений Белл показал, что если сверхъестественной связи нет, то квантовая механика неверна. Однако физик-теоретик также доказал, что вопрос можно решить, построив машину, которая создавала и сравнивала бы много пар запутанных частиц.

Основываясь на инструкциях Белла физик, специалист по квантовой механике Джон Клаузер собрал машину, способную проделывать эту работу. Машина Клаузера могла измерять тысячи пар запутанных частиц и сравнивать их по очень многим параметрам. Полученные результаты заставили ученого думать, что он допустил ошибку. Вскоре французский физик Ален Аспе подобрался к самой сути спора Эйнштейна и Бора.

Ален Аспе – французский физик, специалист по квантовой оптике, теории скрытых параметров и квантовой запутанности.

В опыте Аспе измерение одной частицы могло прямо повлиять на другую только в случае, если сигнал от первой частицы ко второй прошел бы со скоростью, превышающей скорость света. Что, как мы знаем, невозможно. Таким образом оставалось только одной объяснение – сверхъестественная связь. Более того, проведенные эксперименты доказали, что математическая основа квантовой механики верна.

Выходит, квантовые частицы могут быть связаны несмотря на огромные расстояния, а измерение одной частицы действительно может повлиять на ее далекую пару, как если бы пространства между ними никогда не существовало. Но ответить на вопрос о том как работает эта связь сегодня не может никто.

Оптика в средневековой Европе[]

Оптическая диаграмма показывает свет, преломляемый сферическим стеклянным контейнером, полным воды. (от Роджера Бакона или Роберта Гроссетеста)

Английский епископ, Роберт Гроссетест (1175—1253), на широком диапазоне научных тем во время происхождения средневекового университета и восстановления работ Аристотеля создал свои труды. Grosseteste отразил период перехода между Учением Платона раннего средневекового изучения и нового Aristotelianism, он имел тенденцию применять математику и Платоническую метафору света во многих из своих рукописных трудов. Его рассуждения о свете выражаются в виде четырех различных перспектив: эпистемологии света, метафизики или космогонии света, этиологии или физики света, и как богословиясвета.

Откладывая проблемы эпистемологии и богословия, космогония света, Гроссетест описывает происхождение вселенной, что может свободно быть описано как средневековая теория «большого взрыва». Оба его библейских комментария, Hexaemeron (1230 x 35), и его научное На Свету (1235 x 40), взяли их вдохновение от Происхождения 1:3, «Бог сказал, позволять там быть светом», и описал последующий процесс создания как естественный физический процесс, являющийся результатом порождающей власти расширения (и заключение контракта) сферы света.

Оптическая диаграмма демонстрации света, преломляемый сферическим стеклянным контейнером, полным воды. (от Роджера Бакона или Роберта Гроссетеста) показывает, что свет преломляется сферическим стеклянным контейнером (линзой), полным воды. (от Роджера Бакона или Роберта Гроссетеста)Его более общее рассмотрение света — свет является объективной реальностью, физической причинной обусловленности его появления “На Линиях, англах, и фигурирует, где он утверждает, что «естественный агент размножает его власть от себя до получателя» и в По Природе Мест, где он отмечает, что «каждое естественное действие различно по силе и слабости через изменение линий, углов и фигур.»

Английский Franciscan, Роджер Бакон (1214—1294), находился под влиянием писем Гроссетест о важности света. В его оптических письмах (Perspectiva, De multiplicatione specierum, и De speculis comburentibus) он процитировал широкий диапазон недавно переведенных оптических и философских работ, включая таковые из Alhacen, Аристотель, Avicenna, Averroes, Юклид, al-Kindi, Птолемей, Tideus, и Константин африканец

Хотя он не был рабским иммитатором, но он использовал свой математический анализ света и видения писем арабского автора Алхейкна. Но он добавил к этому понятие Neoplatonic, возможно взятое у Grosseteste, что каждый объект излучает «власть» (разновидности), которыми они действует поблизости на соответствующие объекты, получают те разновидности. Отметьте, что использование Беконом оптичесих категорий «разновидности» отличаются значительно от рода / категории разновидностей, найденные в Аристотелевской философии.

Другой английский Franciscan, Джон Печам (умер 1292) основывался на работе Бекона, Grosseteste, и разнообразного диапазона более ранних авторов, чтобы произвести то, что стало наиболее широко используемым учебником по Оптике Средневековья, Perspectiva communis. Его книга сосредоточилась на вопросах о видении, на том, как мы видим, а не по природе света и цвета. Pecham следовал за моделью, сформулированной Алхейкном, но интерпретировал идеи Алхейкна под углом зрения Роджера Бакона.

Как его предшественники, Witelo (1230—1280 x 1314) привлекал обширный материал оптических работ, недавно переведенных с греческого языка, и арабского, чтобы произвести массивное представление предмета с прицелом на Perspectiva. Его теория видения следует за Алхейкном, и он не рассматривает понятие Бекона разновидностей, хотя проходы в его работе демонстрируют, что он был под влиянием идей Бекона

Судя по числу выживания рукописей, его работа хоть не влияла как таковые из Pecham и Бекона, но все же была важной, которые (Pecham) увеличивались с изобретением печати

  • Питер Лиможа (1240—1306)
  • Зэодорик Фрайберга (приблизительно 1250 — приблизительно. 1310)

Эйнштейн объясняет фотоэлектрический эффект

В 1905 году Альберт Эйнштейн объяснил фотоэффект, опираясь на квантовую гипотезу Планка (энергия электромагнитной волны может излучаться и поглощаться исключительно целыми порциями — квантами).

Учёный предположил, что электромагнитная волна (которой считался свет) состоит из световых квантов (фотонов). Поглощение света происходит так, что фотоны квантами передают собственную энергию электронам вещества.

При фотоэффекте часть электромагнитного излучения отражается от поверхности металла, а другая попадает внутрь и там поглощается. Электрон получает энергию от фотона и совершает работу выхода из вещества, приобретая начальную скорость. Формула:

Это уравнение объясняет все законы внешнего фотоэлектрического эффекта:

  • Суммарное число фотоэлектронов, покидающих поверхность вещества, прямо пропорционально числу фотонов, попадающих на поверхность вещества.
  • Максимальная кинетическая энергия фотоэлектрона зависит от частоты электромагнитного излучения и работы выхода, но не зависит от интенсивности электромагнитного излучения.
  • Для каждого вещества есть граница частоты электромагнитного излучения, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая длина волны называется красной границей фотоэффекта. Она зависит от работы выхода, химической природы вещества и состояния поверхности.

В итоге физики смогли прийти к заключению и открыли новое явление: корпускулярно-волновой дуализм.

В 1923 году Луи де Бройль предположил, что не только свет обладает корпускулярно-волновым дуализмом — но и элементарные частицы.

Дифракция электронов на щели подтверждает теорию корпускулярно-волнового дуализма. Источник изображения: school-collection.edu.ru.

Электрон, нейтрон, фотон в одних условиях ведут себя как частицы, обладающие определёнными энергиями и импульсами, а в других — как волны, что проявляется в их способности к интерференции и дифракции. Наукой, которая рассматривает объекты с точки зрения квантово-волнового дуализма, стала квантовая механика.

Чтобы наглядно представить явление квантово-волнового дуализма, вернёмся к уже знакомому нам эксперименту Томаса Юнга — опыта с двумя щелями.

Через щели теперь будут пропускать лишь одну элементарную частицу — электрон. Квантовая механика демонстрирует нам удивительную картину: пока данная элементарная частица не попадёт на экран, она не будет занимать определённого положения в пространстве.

Частица не летит по какой-либо траектории — её «путь» представляет собой систему эволюционирующего набора вероятностей того, какими путями она может двигаться. В данный момент времени эта частица находится нигде. А когда мы начинаем непосредственное наблюдение, мы видим мы её лишь в одном из всех возможных положений.

Здесь мы и знакомимся с эффектом наблюдателя.

Rate article